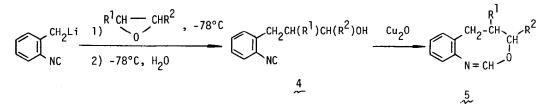

A NEW SYNTHESIS OF 4,5-DIHYDRO-3,1-BENZOXAZEPINE AND 4H-5,6-DIHYDRO-3,1-BENZOXAZOCINE DERIVATIVES

Yoshihiko Ito, Kazuhiro Kobayashi and Takeo Saegusa* Department of Synthetic Chemistry, Kyoto University, Kyoto 606, Japan

(Received in Japan 13 March 1978; received in UK for publication 14 April 1978)

In a previous paper¹⁾ we described the generation of <u>o</u>-lithiomethylphenyl isocyanide, which was a versatile reagent for syntheses of indole derivatives. Herein, we wish to report an elaboration of the lithiomethylphenyl isocyanide to lead to heterocycles such as 4,5-dihydro-3,1-benzoxazepine (3) and 4H-5,6-dihydro-3,1-benzoxazocine (5) derivatives.

<u>o</u>-(β -Hydroxyalkyl)phenyl isocyanides (2), which were prepared by the reactions of <u>o</u>lithiomethylphenyl isocyanide with aldehydes or ketones, were heated with a catalytic amount of Cu₂O in benzene to produce 4,5-dihydro-3,1-benzoxazepine derivatives (3) in excellent yields.



The intramolecular cyclization reaction is based upon the copper catalyzed insertion reaction of isonitriles into the oxygen-hydrogen bond of alcohols which was found by us.²⁾ A sample procedure is illustrated as follows. To <u>o</u>-lithiomethylphenyl isocyanide, which was generated in situ at -78°C by treating 176 mg (1.5 mmol) of <u>o</u>-tolyl isocyanide with lithium diisopropylamide (LDA) (3.0 mmol) in 4 ml of diglyme according to the reported procedure,¹⁾ was dropwise added 174 mg (3.0 mmol) of propionaldehyde. The red color characteristic of the lithiomethylphenyl isocyanide disappeared immediately. The reaction mixture was quenched at -78°C with aq NH₄Cl, extracted with ether, dried over Na₂SO₄ and evaporated. The residue was distilled

2088

using Kugelrohr to afford a 93% yield of \underline{o} -(β -hydroxybutyl)phenyl isocyanide (2b) (bp 98°C/ 0.6 mmHg) contaminated with a trace amount of 4-ethyl-4,5-dihydro-3,1-benzoxazepine (3b) as judged by the IR spectrum. [2b : IR (neat) 3400, 2115 cm⁻¹; NMR (CC1_d with TMS) δ 0.98 (t, 3H), 1.5 (m, 2H), 1.7 (broad s, 1H), 2.65 (d, 2H), 3.6 (m, 1H), 7.08 (s, 4H)]. On injection of 2b into a glpc instrument at 200°C, 2b was converted to 3b to the extent of more than 80%. A suspension of 240 mg (1.37 mmol) of $\frac{2b}{2b}$ and 40 mg (0.28 mmol) of Cu₂O in 3 ml of benzene was heated at reflux for 20 min to give 4-ethyl-4,5-dihydro-3,1-benzoxazepine (3b) (bp 82°C/0.6 mmHg) in almost quantitative yield. [$\frac{3b}{200}$: IR (neat) 1646 cm⁻¹; NMR (CDCl₃ with TMS) δ 0.93 (t, 3H), 1.52 (q, 2H), 2.96 (d, 2H), 4.40 (m, 1H), 6.9 \sim 7.3 (m, 5H)]. Compound 3_{M} was not stable to moisture, decomposing gradually in air. The progress of the cyclization of 2 was monitored by the IR absorption band at about 2100 cm⁻¹ due to the N=C group of the starting material (2). As illustrated by entries in Table 1, the present method for the preparation of 4,5-dihydro-3,1benzoxazepine (3) is readily extended to various o-alkylphenyl isocyanides and aldehydes or ketones.³⁾ Following the above procedure, 2,4-xylyl isocyanide and 2,6-xylyl isocyanide were converted to the corresponding 4,5-dihydro-3,1-benzoxazepines (3) via selective lithiation at the ortho methyl group followed by reaction with aldehydes or ketones (Run No. 7 and 8). Moreover, o-ethylphenyl isocyanide, of which selective lithiation at the benzylic carbon can be achieved by treatment with lithium 2,2,6,6-tetramethylpiperidide, was successfully used for the synthesis of 4,5-dihydro-3,1-benzoxazepine derivatives (Run No. 10).

As already reported,¹⁾ \underline{o} -(\mathscr{X} -hydroxyalkyl)phenyl isocyanides (4), which are prepared in fairly good yields by the reaction of \underline{o} -lithiomethylphenyl isocyanide with alkylene oxides, may be converted to tryptophol derivatives. Now it is found that \underline{o} -(\mathscr{X} -hydroxylakyl)phenyl isocyanides (4) subjected to the Cu₂O-catalyzed cyclization produce 4H-5,6-dihydro-3,1benzoxazocine derivatives (5) in low to moderate yields.

To a solution of <u>o</u>-lithiomethylphenyl isocyanide (1.5 mmol) in 4 ml of diglyme at -78° C, propylene oxide (3 mmol) was added dropwise, and the mixture was stirred at this temperature for 3 hr. During this time, the characteristic red color of o-lithiomethylphenyl isocyanide turned

			Table 1. Synthesis of 4,5-Dihydro-3,1-benzoxazepine Derivatives (3)							
	R	1	CH(R ³) NC)Li R ⁴ + R ⁵	>=0		$- \frac{R^{1}}{r_{2}}$	$\int_{NC}^{CH(R^{3})C(R^{4})(R^{5})}$	R^{3}	
Run No.		~	R ¹	R ²	$\frac{3}{R^3}^{a)}$	R ⁴	R ⁵	% (overall yield for 1-3)	Reaction Time (min)	
1	3a ⋙	:	н	Н	Н	Η	снз	90	20	
2	3b ∕∽∽	:	Н	н	Н	н	с ₂ н ₅	93	20	
3	3c	:	н	Н	H	н	с ₆ н ₅	93	30	
4	3d	:	Н	н	Н	н	Furyl ^{b)}	89	30	
5	3e,	:	Н	Н	н	снз	сн _з	96	60	
6	3f	:	Н	н	н	— (сн ₂	.) ₄ —	93	180	
7	3g ≁≫	:	снз	н	н	снз	снз	87	60	
8	3h	:	H	снз	н	Н	с ₂ н ₅	90	180	
9	3i	:	C1	н	н	CH ₃	CH ₃	95	60	
10	3j	:	н	Н	сн _з	сн _з	сн _з	93	30	

a) All products of $3^{(4)}$ showed satisfactory elemental analyses and mass spectra (M⁺). b) Fury : \int_{0}^{1} gradually to violet. The reaction mixture at -78°C was quenched with aq NH₄Cl, extracted with ether, dried over Na₂SO₄ and evaporated. \underline{o} -(χ -Hydroxybutyl)phenyl isocyanide (4a) (bp 140°C/ 2 mmHg) was obtained in 91% yield. [4a : IR (neat) 3400, 2115 cm⁻¹; NMR (CDCl₃ with TMS) δ 1.25 (d, 3H), 1.8 (m, 2H), 2.7 (m, 3H), 3.80 (m, 1H), 7.0~7.2 (m, 4H)]. A suspension of 260 mg (1.5 mmol) of 4a and 55 mg (0.38 mmol) of Cu₂O in 3 ml of benzene was heated at reflux for 10 hr. The product 4-methyl-4H-5,6-dihydro-3,1-benzoxazocine (5a) was isolated by Kugelrohr distillation(bp 75°C/10⁻³mmHg). [5a : IR (neat) 1655 cm⁻¹; NMR (CDCl₃ with TMS) δ 1.15 (d, 3H), 1.5 (m, 2H), 2.72 (t, 2H), 4.4 (m, 1H), 6.9~7.1 (m, 5H)]. Similarly, the corresponding 4H-5,6-dihydro-3,1-benzoxazocine derivatives (5b) was prepared by the reaction of <u>o</u>-lithiomethylphenyl isocyanide with 1-butene oxide in 42% isolated yield.⁵)

References and Notes

- 1) Y. Ito, K. Kobayashi and T. Saegusa, <u>J. Am. Chem. Soc</u>., <u>99</u>, 3532 (1977).
- a) T. Saegusa and Y. Ito, <u>Synthesis</u>, 291 (1975).
 - b) T. Saegusa, Y. Ito, N. Takeda and K. Hirota, Tetrahedron Lett., 1273 (1967)
 - c) D. Hoppe, <u>Angew. Chem</u>., 86, 878 (1974).
- 3) d,β -Unsaturated Ketones reacted with <u>o</u>-lithiomethylphenyl isocyanide via conjugate addition under the reaction conditions.
- 4) $3c_{2}$: bp 160°C/1 mmHg; IR (neat) 1640 cm⁻¹; NMR (CDC1₃ with TMS) § 3.2 (m, 2H), 5.30 (dd, 1H), 6.9~7.3 (m, 10H).
 - 3f: bp 110°C/0.6 mmHg ; IR (neat) 1642 cm⁻¹ ; NMR (CC1₄ with TMS)5 1.5~2.0 (m, 8H), 3.00 (s, 2H), 6.8~7.2 (m, 5H).
 - <u>3h</u> : bp 95°C/0.6 mmHg ; IR (neat) 1649 cm⁻¹ ; NMR (CCl₄ with TMS) \mathcal{E} 0.95 (t, 3H), 1.43 (q, 2H), 2.27 (s, 3H), 2.80 (d, 2H), 4.3 (m, 1H), 6.6 \sim 7.0 (m, 4H).

3j : bp 90°C/0.6 mmHg ; IR (neat) 1645 cm⁻¹ ; NMR (CC1₄ with TMS) $_{6}$ 1.06 (s, 3H), 1.17 (d, 3H), 1.39 (s, 3H), 2.75 (q, 1H), 6.8~7.2 (m, 5H).

5) $5b = bp 83^{\circ}C/10^{-3} \text{ mmHg}$; IR (neat) 1656 cm⁻¹; NMR (CDC1₃ with TMS) 0.80 (t, 3H), 1.4 (m, 4H), 2.73 (t, 2H), 4.3 (m, 1H), 7.0~7.2 (m, 5H).